Tuesday, 17 February 2015

Peranan Sitokinin Untuk Pertumbuhan Tanaman

Sitokinin

Sitokinin merupakan ZPT yang mendorong pembelahan (sitokinesis). Beberapa macam sitokinin merupakan sitokinin alami (misal : kinetin, zeatin) dan beberapa lainnya merupakan sitokinin sintetik. Sitokinin alami dihasilkan pada jaringan yang tumbuh aktif terutama pada akar, embrio dan buah. Sitokinin yang diproduksi di akar selanjutnya diangkut oleh xilem menuju sel-sel target pada batang.
Ahli biologi tumbuhan juga menemukan bahwa sitokinin dapat meningkatkan pembelahan, pertumbuhan dan perkembangan kultur sel tanaman. Sitokinin juga menunda penuaan daun, bunga dan buah dengan cara mengontrol dengan baik proses kemunduran yang menyebabkan kematian sel-sel tanaman. Penuaan pada daun melibatkan penguraian klorofil dan protein-protein, kemudian produk tersebut diangkut oleh floem ke jaringan meristem atau bagian lain dari tanaman yang membutuhkannya.
Daun kacang jogo (Phaseolus vulgaris) yang ditaruh dalam wadah berair dapat ditunda penuaannya beberapa hari apabila disemprot dengan sitokinin. Sitokinin juga dapat menghambat penuaan bunga dan buah. Penyemprotan sitokinin pada bunga potong dilakukan agar bunga tersebut tetap segar.
Sebagian besar tumbuhan memiliki pola pertumbuhan yang kompleks yaitu tunas lateralnya tumbuh bersamaan dengan tunas terminalnya. Pola pertumbuhan ini merupakan hasil interaksi antara auksin dan sitokinin dengan perbandingan tertentu.
Sitokinin diproduksi dari akar dan diangkut ke tajuk, sedangkan auksin dihasilkan di kuncup terminal kemudian diangkut ke bagian bawah tumbuhan. Auksin cenderung menghambat aktivitas meristem lateral yang letaknya berdekatan dengan meristem apikal sehingga membatasi pembentukan tunas-tunas cabang dan fenomena ini disebut dominasi apikal. Kuncup aksilar yang terdapat di bagian bawah tajuk (daerah yang berdekatan dengan akar) biasanya akan tumbuh memanjang dibandingkan dengan tunas aksilar yang terdapat dekat dengan kuncup terminal. Hal ini menunjukkan ratio
sitokinin terhadap auksin yang lebih tinggi pada bagian bawah tumbuhan.
Interaksi antagonis antara auksin dan sitokinin juga merupakan salah satu cara tumbuhan dalam mengatur derajat pertumbuhan akar dan tunas, misalnya jumlah akar yang banyak akan menghasilkan sitokinin dalam jumlah banyak. Peningkatan konsentrasi sitokinin ini akan menyebabkan sistem tunas membentuk cabang dalam jumlah yang lebih banyak. Interaksi antagonis ini umumnya juga terjadi di antara ZPT tumbuhan lainnya.

Peranan Sitokinin

Pengaturan pembelahan sel dan diferensiasi sel


Sitokinin, diproduksi dalam jaringan yang sedang tumbuh aktif, khususnya pada akar, embrio, dan buah. Sitokinin yang diproduksi di dalam akar, akan sampai ke jaringan yang dituju, dengan bergerak ke bagian atas tumbuhan di dalam cairan xylem.
Bekerja bersama-sama dengan auksin; sitokinin menstimulasi pembelahan sel dan mempengaruhi lintasan diferensiasi. Efek sitokinin terhadap pertumbuhan sel di dalam kultur jaringan, memberikan petunjuk tentang bagaimana jenis hormon ini berfungsi di dalam tumbuhan yang lengkap.
Ketika satu potongan jaringan parenkhim batang dikulturkan tanpa memakai sitokinin, maka selnya itu tumbuh menjadi besar tetapi tidak membelah. Sitokinin secara mandiri tidak mempunyai efek. Akan tetapi, apabila sitokinin itu ditambahkan bersama-sama dengan auksin, maka sel itu dapat membelah.

Pengaturan Dominansi Apikal 

Sitokinin, auksin, dan faktor lainnya berinteraksi dalam mengontrol dominasi apikal, yaitu suatu kemampuan dari tunas terminal untuk menekan perkembangan tunas aksilar. Sampai sekarang, hipotesis yang menerangkan regulasi hormonal pada dominansi apikal, yaitu hipotesis penghambatan secara langsung, menyatakan bahwa auksin dan sitokinin bekerja secara antagonistis dalam mengatur pertumbuhan tunas aksilari.
Berdasarkan atas pandangan ini, auksin yang ditransportasikan ke bawah tajuk dari tunas terminal, secara langsung menghambat pertumbuhan tunas aksilari. Hal ini menyebabkan tajuk tersebut menjadi memanjang dengan mengorbankan percabangan lateral.
Sitokinin yang masuk dari akar ke dalam sistem tajuk tumbuhan, akan melawan kerja auksin, dengan mengisyaratkan tunas aksilar untuk mulai tumbuh. Jadi rasio auksin dan sitokinin merupakan faktor kritis dalam mengontrol penghambatan tunas aksilar.
Banyak penelitian yang konsisten dengan hipotesis penghambatan langsung ini. Apabila tunas terminal yang merupakan sumber auksin utama dihilangkan, maka penghambatan tunas aksilar juga akan hilang dan tanaman menjadi menyemak. Aplikasi auksin pada permukaan potongan kecambah yang terpenggal, akan menekan kembali pertumbuhan tunas lateral. Mutan yang terlalu banyak memproduksi sitokinin, atau tumbuhan yang diberi sitokinin, juga bertendensi untuk lebih menyemak dibanding yang normal.

Efek Anti Penuaan

Sitokinin, dapat menahan penuaan beberapa organ tumbuhan, dengan menghambat pemecahan protein, dengan menstimulasi RNA dan sintesis protein, dan dengan memobilisasi nutrien dari jaringan di sekitarnya.
Apabila daun yang dibuang dari suatu tumbuhan dicelupkan ke dalam larutan sitokinin, maka daun itu akan tetap hijau lebih lama daripada biasanya. Sitokinin juga memperlambat deteorisasi daun pada tumbuhan utuh. Karena efek anti penuaan ini, para floris melakukan penyemprotan sitokinin untuk menjaga supaya bunga potong tetap segar.

Monday, 16 February 2015

TRICHODERMA SP SEBAGAI PUPUK BIOLOGIS DAN BIOFUNGISIDA

Ketergantungan kita terhadap bahan-bahan kimia (pupuk kimia) apalagi bahan yang bersifat sebagai racun (insektisida, fungisida dan bakterisida) harus segera kita tinggalkan. Kita harus menggali bahan-bahan disekitar kita yang bisa kita manfaatkan untuk mengganti bahan-bahan kimia tersebut. Sudah saatnya kita kembali ke alam. Banyak mikroorganisme yang dapat kita manfaatkan untuk proses kelestarian lingkungan kita.
Salah satu mikroorganisme fungsional yang dikenal luas sebagai pupuk biologis tanah dan biofungisida adalah jamur Trichoderma sp. Mikroorganisme ini adalah jamur penghuni tanah yang dapat diisolasi dari perakaran tanaman lapangan. Spesies Trichoderma disamping sebagai organisme pengurai, dapat pula berfungsi sebagai agen hayati dan stimulator pertumbuhan tanaman. Beberapa spesies Trichoderma telah dilaporkan sebagai agensia hayati seperti T. Harzianum, T. Viridae, dan T. Konigii yang berspektrum luas pada berbagai tanaman pertanian. Biakan jamur Trichoderma dalam media aplikatif seperti dedak dapat diberikan ke areal pertanaman dan berlaku sebagai biodekomposer, mendekomposisi limbah organik (rontokan dedaunan dan ranting tua) menjadi kompos yang bermutu. Serta dapat berlaku sebagai biofungisida. Trichoderma sp dapat menghambat pertumbuhan beberapa jamur penyebab penyakit pada tanaman antara lain Rigidiforus lignosus, Fusarium oxysporum, Rizoctonia solani, Sclerotium rolfsii, dll.
Sifat antagonis Trichoderma meliputi tiga tipe :
Trichoderma menghasilkan sejumlah enzim ekstraseluler beta (1,3) glukonase dan kitinase yang dapat melarutkan dinding sel patogen
Beberapa anggota trichoderma sp menghasilkan toksin trichodermin. Toksin tersebut dapat menyerang dan menghancurkan propagul yang berisi spora-spora patogen disekitarnya
Jenis Trichoderma viridae menghasilkan antibiotik gliotoksin dan viridin yang dapat melindungi bibit tanaman dari serangan penyakit rebah kecambah
Pupuk biologis dan biofungisida Trichoderma sp dapat dibuat dengan inokulasi biakan murni pada media aplikatif, misalnya dedak. Sedangkan biakan murni dapat dibuat melalui isolasi dari perakaran tanaman, serta dapat diperbanyak dan diremajakan kembali pada media PDA (Potato Dextrose Agar). Isolasi banyak dilakukan oleh kalangan peneliti maupun produsen pupuk, tetapi masih terlalu merepotkan untuk diadopsi oleh petani. Sebagai petani, untuk lebih efisiennya dapat memproduksi pupuk biologis yang siap aplikasi saja, sehingga hanya perlu membeli dan memperbanyak sendiri biakan murninya dan diinokulasikan pada media aplikatif. Atau jika menginginkan kepraktisan dapat membeli pupuk yang siap tebar untuk setiap kali aplikasi.
Dari beberapa literatur yang pernah saya baca dengan penambahan pupuk biologis Trichoderma sp akan meningkatkan efisiensi pemupupukan. Pada tanah yang tandus pemberian pupuk organik Trichoderma sp dan pupuk kimia secara bersamaan akan memberikan hasil yang maksimal daripada pemberian pupuk organik atau pupuk kimia secara terpisah walaupun dengan jumlah yang banyak. Dengan pemberian pupuk organik akan menghemat penggunaan pupuk kimia.
Seringkali penyakit layu dan busuk pangkal batang pada tanaman disebabkan oleh jamur fusarium dan sulit dikendalikan dengan fungisida kimia. Oleh karena itu tidak ada salahnya kita mencoba mengaplikasikan pupuk biologis dan biofungisida Trichoderma sp pada tanaman kita untuk mencegah penyakit akar dan busuk pangkal batang yang dapat menyebabkan layu tanaman.

Aplikasi Azospirillum di Bidang Pertanian

Aplikasi Azosprillum dibidang pertanian masih sangat terbatas. Di banyak Negara aplikasiAzospirillum masih dalam skala kecil . Namun demikian, di beberapa negara di Amerika Latin, Azospirillum telah mulai digunakan secara komersial dan dalam skala yang luas. Berikut Bashan dan Holguin (1997) dan Reis et al. (2011) menjelaskan perkembangan aplikasi Azospirillum di beberapa belahan dunia, Inokulum Azospirillum generasi pertama dalam skala kecil diintroduksi secara perlahan kepada pasar pertanian. Faktor utama yang menghalangi introduksi Azospirillum dalam skala besar adalah hasil yang tidak konsisten dan tidak dapat diprediksi. Kelemahan ini telah diketahui sejak awal dari aplikasi Azospirillum dan menyurutkan minat dari pengguna komersial. Dua puluh
tahun evaluasi dari data percobaan lapangan menunjukkan bahwa 60 – 70 % dari seluruh percobaan berhasil dengan peningkatan hasil yang nyata, berkisar antara 5 sampai 30%. Faktor keberhasilan utama adalah aplikasi sel hidup secara hati-hati dan perawatan percobaan dengan benar. Sel-sel bakteri haruslah diambil dari fase eksponen, bukan dari inokulum pada fase stasioner. Walaupun, inokulasi lapangan belum menjadi area utama dari penelitian Azospirillum saat ini, beberapa percobaan lapangan dan rumah kaca akhir-akhir ini, khususnya pada sereal, sekali lagi menunjukkan potensial yang menjanjikan (Bashan dan Holguin, 1997). Menurut Reis et al. (2011) pemanfaatan bakteri sebagai produk inokulum merupakan tujuan yang ideal, berdasarkan penampilan inokulan Rhizobium, khususnya di Brasil, di mana 100 persen produksi menggunakan bakteri dan bukan pupuk untuk mendapatkan 100 persen N yang dibutuhkan bagi hara tanaman. Setelah percobaan yang begitu lama, mengisolasi dan mendeskripsi Azospirillum, akhirnya beberapa upaya juga dilakukan untuk mendapatkan produk komersial yang menggunakan bakteri ini. Teknologi ini juga didasarkan pada produk Rhizobium yang diaplikasikan pada penyelubung benih dalam campuran dengan peat atau menggunakan bermacam formulasi larutan yang berbeda. Pada mulanya, hanya A. brasilense dipilih sebagai inokulan. Di Amerika Serikat, satu produk yang disebut Azo-GreenTM, yang diproduksi oleh perusahaan yang bernama Genesis Turfs Forages, direkomendasikan diberikan pada benih untuk meningkatkan perkecambahan, sistem akar, tahan kekeringan, dan kesehatan tanaman. Di Italia, Jerman, dan Belgia, produk lain yang mengandung campuran A. brasilense (strain Cd) dan A. lipoferum (strain Br17) diformulasikan dalam campuran vermikulit atau formula larutan. Nama komersialnya adalah Zea-NitTM dan diproduksi oleh Heligenetics dan mereka merekomendasikan pengurangan 30 – 40 % pupuk N bagi tanaman. Di Prancis, AzoGreenTM lain digunakan pada jagung dengan kenaikan hasil 100%. Di Meksiko, satu produk yang bernama “Fertilizer for Maize” dikembangkan oleh Universitas Puebla dan diaplikasikan pada 5000 ha lahan pada tahun 1993. Lebih baru lagi, pada tahun 2008, produk inokulan lain yang berbasis Azospirillum dikembangkan untuk tanaman kopi di Meksiko dan aplikasinya menunjukkan adanya penurunan waktu siklus penologi tanaman. Uruguay juga mempunyai produk yang diberi nama GraminanteTM yang dikomersialkan dalam bentuk tepung yang dicampur dengan kalsium karbonat. Terkait dengan spesies dan strain bakteri yang digunakan, yang berbeda di tiap Negara, pertanyaannya mengapa spesies tersebut merupakan yang terbaik?. Hasil evaluasi ternyata bahwa kedua spesies dan strain yang digunakan menunjukkan hasil yang negatif pada produksi siderophore dan pelarut fosfat. Hasil positif ada produksi fitohormon IAA, sitokinin (zeatin), GA3, etilen, putrescine, spermidin, spermin, dan cadaverin. Kenyataan ini memiliki implikasi teknologi yang penting terhadap formulasi inokulan, karena strain yang berbeda menghasilkan konsentrasi zat pertumbuhan tanaman (ZPT) yang berbeda. Selain itu, penting juga untuk mempertahankan kualitas inokulan agar memberikan kolonisasi atau invasi akar yang efisien. Penting untuk menyesuaikan densitas sel (minimum 109 per gram) hidup, bebas kontaminan, dan secara agronomi terbukti strain yang diberikan mampu memberikan hasil tanpa atau dengan dosis rendah pupuk nitrogen atau meningkatkan hasil bersama pupuk nitrogen.
Pada tahun 2009, satu perusahaan di Brasil menjual produk berbahan Azospirillum untuk diaplikasikan pada jagung dan padi. Di Argentina, ada beberapa perusahaan yang menghasilkan dan menjual inokulan berbahan A. brasilense yang diaplikasikan dalam bentuk solid (tepung) atau formula cair pada tanaman komersial yang berbeda (seperti padi, jagung, gandum, bunga matahari, sorgum, dsb.). Sekarang ini, dengan realitas untuk menghasilkan lebih banyak pangan dengan biaya yang lebih sedikit, dan tanpa polusi lingkungan, maka pemupukan dengan pupuk hayati merupakan alternatif bagi pertanian yang berkelanjutan. Walaupun keuntungan dari inokulasi dengan Azospirillum sp. telah dijelaskan panjang lebar, upaya untuk mengisolasi strain baru dan mengevaluasi karakteristik terhadap pemacu pertumbuhan tanaman dalam lingkungan yang alami haruslah terus dilakukan untuk mendukung penggunaannya di bidang pertanian sebagai inokulan atau pupuk hayati.

Interaksi Azospirillum dengan Bahan Organik

Menurut Bashan (1999), bahan organik memberikan pengaruh yang beragam terhadapAzospirillum, bisa positif, tapi juga bisa negatif. Percobaan di laboratorium menunjukkan bahwa amandemen tanah dengan bahan organik meningkatkan serapan dan daya hidup Azospirillum spp. Akan tetapi, ada juga bukti di lapangan bahwa pengaruh bahan organik terhadap Azospirillum spp. di dalam tanah kontradiktif dengan hasil penemuan di laboratorium. Di India, pemberian bahan organik pada tanah kebun hanya mendukung populasi A. brasilense secara terbatas. Pada penelitian lain, pemberian bahan organik pada tanah dan arang awalnya saja meningkatkan populasi A. brasilense spp., tetapi populasinya kemudian menurun ke taraf yang setara dengan tanpa bahan organis. Di Amerika Serikat, daya hidupA. brasilense dalam bahan pembawa peat dan pasir dimonitor dengan seksama. Hasilnya, awalnya populasi menurun, kemudian populasinya tetap stabil selama 60 hari. Bahan pembawa dengan kandungan peat tertinggi (1-3%) memiliki populasi A. brasilense tertinggi. Di India, penambahan jerami padi pada tanah sawah meningkatkan Azospirillum spp. Bashan dan Vazquez (2000) menemukan bahwa, sementara CaCO3 dan pasir berpengaruh negatif, bahan organik memiliki pengaruh positif terhadap daya hidup Azospirillum spp. Namun demikian secara umum, bahan organik memberikan pengaruh yang baik bagi daya hidup dan persistensi Azospirillum dalam tanah. Teori terhadap pengaruh negatif bahan organik bisa jadi bahwa pada bahan organik konsentrasi tinggi, total jumlah bakteri dalam tanah telah mencapai 107 – 108 spk per g sehingga bakteri lain berkompetisi denganAzospirillum yang diinokulasi dalam tanah. Penjelasan lain, bahan organik mungkin telah memberikan hara yang cukup banyak pada tanaman sehingga pengaruh inokulasi bakteri menjadi tertutupi.

Koinokulasi Azospirillum dengan mikroorganisme lain

Azospirillum dapat bersinergi dengan mikroorganisme lain. Koinokulasi didasarkan pada campuran inokulan berupa kombinasi beberapa mikroorganisme yang berinteraksi secara sinergi, atau ketika Azospirillum berfungsi sebagai bakteri “pembantu” untuk memperkuat penampilan mikroorganisme berguna lainnya. Azospirillum dapat berasosiasi dengan bakteri perombak gula atau polisakarida. Kokultur dapat dianggap sebagai suatu asosiasi metabolik di mana bakteri perombak gula menghasilkan produk rombakan atau fermentasi yang dapat digunakan oleh Azospirillum. Pada kokultur Bacillus dan Azospirillum, rombakan pektin oleh Bacillus dan fiksasi N2 olehAzospirillum menjadi meningkat. Kokultur A. brasilense dengan Enterobacter cloaceae atauA. brasilense dengan Arthrobacter giacomelloi menghasilkan fiksasi N2 yang lebih efisien dibanding bila mereka sendiri-sendiri. Ketika Azospirillum sp DN64 dikoinokulasi dengan campuran jamur selulotik, aktivitas nitrogenasenya meningkat 22 kali lipat Dual inokulasi tanaman legum dengan Azospirillum dan Rhizobium ditemukan meningkatkan beberapa peubah pertumbuhan tanaman dibanding dengan inokulasi tunggal.Azospirillum dianggap sebagai pembantu Rhizobium dengan cara menstimulasi nodulasi, fungsi nodulasi, dan kemungkinan metabolisme tanaman. Fitohormon yang dihasilkan olehAzospirillum memacu diferensiasi sel epidermis pada rambut akar yang kemudian meningkatkan jumlah tempat-tempat yang
berpotensi bagi infeksi Rhizobium. Hasilnya, lebih banyak nodul terbentuk. Pada percobaan lapangan, inokulasi kultur campuranAzospirillum dengan Rhizobium secara nyata meningkatkan jumlah total nodul, berat kering nodul, dan jerami, serta memberikan peningkatan hasil biji. Interaksi ini lebih jauh diperkuat oleh adanya bahan organik pada media tumbuh tanaman (Cassa´n, 2011).

Mekanisme Azospirillum dalam Meningkatkan Pertumbuhan Tanaman

Mekanisme pertama yang diusulkan terhadap pemacuan pertumbuhan tanaman olehAzospirillum hampir sepenuhnya terkait dengan status nitrogen dalam tanaman, melalui fiksasi biologi atau aktivitas enzim reduktase nitrat. Akan tetapi, mekanisme ini kenyataannya kurang berarti dari sisi agronomi dari yang pernah diharapkan. Dengan demikian, mekanisme lain telah dipelajari dan diusulkan untuk genus mikroba ini, antara lain produksi siderophore, pelarutan fosfat, biokontrol fitopatogen, dan proteksi tanaman terhadap cekaman, seperti salinitas tanah, atau senyawa beracun.
Bashan dan Hulguin (1997) mengusulkan hipotesis aditif terhadap mekanisme Azospirillumdalam memacu pertumbuhan tanaman. Mereka menyatakan bahwa kemungkinan lebih dari satu mekanisme yang terlibat pada waktu yang sama. Sebagai contoh, fiksasi N2 berkontribusi kurang dari 5% dari pengaruh Azospirillum pada tanaman. Ini tidak dapat menjelaskan secara penuh peningkatan hasil tanaman. Ketika dikombinasikan dengan pengaruh mekanisme lainnya, kontribusi yang kecil ini dapat menjadi kontribusi yang berarti. Dengan demikian, aktivitas gabungan dari semua mekanisme yang terlibat bertanggung jawab bagi pengaruh yang besar dari inokulasi Azospirillum pada pertumbuhan tanaman. Reis et al. (2011) menyatakan bahwa Azospirillum spp mempengaruhi pertumbuhan tanaman melalui banyak mekanisme. Ini termasuk fiksasi N2, produksi fitohormon (seperti auksin, sitokinin, dan giberelin), peningkatan penyerapan hara, peningkatan ketahanan cekaman, produksi vitamin, siderophore dan biokontrol, serta pelarutan P. Namun demikian, salah satu mekanisme yang paling penting adalah kemampuanAzospirillum menghasilkan fitohormon dan ZPT lainnya. Salah satu mekanisme utama yang diusulkan untuk menjelaskan “hipotesis aditif” adalah terkait dengan kemampuanAzospirillum sp. menghasilkan senyawa-senyawa seperti fitohormon. Telah dikenal bahwa sekitar 80% bakteri yang diisolasi dari rhizosfer tanaman mampu memproduksi senyawa IAA. Kemudian, diusulkan bahwa Azospirillum sp. dapat memacu pertumbuhan tanaman melalui ekskresi fitohormon. Saat ini, kita tahu bahwa bakteri ini mampu menghasilkan senyawa-senyawa kimia seperti auksin, sitokinin, giberelin, etilen, dan ZPT lainnya seperti ABA, poliamin (spermidin, spermin, dan cadaverin) dan nitrat oksida (Cassa’n et al., 2011). Fiksasi nitrogen adalah mekanisme pertama yang diusulkan untuk menjelaskan peningkatan pertumbuhan tanaman setelah diinokulasi dengan Azospirillum. Ini terutama karena ada peningkatan sejumlah senyawa nitrogen dan aktivitas enzim nitrogenase pada tanaman yang diinokulasi dengan Azospirillum. Akan tetapi, beberapa tahun kemudian, penelitian menunjukkan bahwa kontribusi fiksasi N2 oleh Azospirillum terhadap tanaman sedikit sekali, berkisar antara 5 sampai 18% dari total peningkatan tanaman. Secara umum, kontribusinya kurang dari 5%. Azospirillum mutan-Nif juga mampu meningkatkan pertumbuhan tanaman sama dengan tipe liarnya. Penemuan ini hampir saja membuat orang meninggalkan aspek fiksasi N2 ini dari Azospirillum, kecuali hanya untuk kajian genetik murni. Akhir-akhir ini, interes terhadap kajian Azospirillum pada aspek fiksasi N2 mulai meningkat. Ditemukan bahwa A. brasilense Sp-7 tidak menyintesis enzim nitrogenase pada suhu 42⁰C dan juga enzim ini tidak stabil pada suhu tersebut. Akan tetapi, pada A. brasilense Sp-9, aktivitas enzim nitrogenase stabil dan menunjukkan aktivitas asetilen reduksi tertinggi pada suhu 42⁰C. Aktivitas enzim nitrogenase Azospirillum ditemukan meningkat ketika ditumbuhkan dalam kultur campuran dengan bakteri lainnya, kendatipun mereka berasal dari habitat yang sangat berbeda. Contoh kasus adalah campuran A. brasilense Cd dengan bakteri Staphylococcus sp. yang meningkatkan fiksasi N2 dari A. brasilense. Pengaruhnya lebih kuat ketika supernatan Staphylococcus ditambahkan pada kultur A. brasilense. Pada kajian lain, fiksasi N2 dari A. brasilense Sp-245 diperkuat oleh penambahan aglutinin kecambah gandum.
Bashan dan Holguin (1997) menyatakan bahwa Azospirillum bisa jadi mempengaruhi tanaman dengan cara memberikan signal kepada tanaman inang. Adanya kenyataan bahwaAzospirillum mempengaruhi metabolisme sel tanaman dari luar sel mengindikasikan bahwa bakteri ini mampu mengekskresi dan memancarkan signal yang melewati dinding sel tanaman dan ditangkap oleh membran tanaman. Interaksi ini menginisiasi rantai peristiwa yang menghasilkan perubahan metabolisme pada tanaman yang diinokulasi. Karena membran tanaman sangat sensitif terhadap perubahan, maka responsnya dapat menjadi petunjuk akan adanya kegiatan Azospirillum pada tingkat seluler. Selain itu, meningkatnya penyerapan hara mineral pada tanaman sebagai akibat dari inokulasi Azospirillum juga merupakan penjelasan yang populer bagi pengaruh inokulasi pada tahun 1980an. Kendatipun, beberapa kajian ada yang menunjukkan akumulasi nitrogen dan hara mineral lainnya pada tanaman yang diinokulasi, tetapi sebagian penelitian menunjukkan bahwa peningkatan pertumbuhan tanaman tidak mesti karena peningkatan penyerapan hara. Pada saat ini, jalan penjelasan ini agak kurang berkembang. Azospirillum dapat juga berperan sebagai agen biokontrol terhadap patogen tanaman dalam tanah. Ada beberapa bukti yang mendukungnya. Azospirillum lipoferum M menghasilkan catechol siderophores pada kondisi kekurangan besi, yang menunjukkan aktivitas antimikroba terhadap beberapa isolat bakteri dan jamur. Contoh lain, dua puluh isolatAzospirillum ditemukan menghasilkan bakteriosin yang menghambat pertumbuhan beberapa bakteri. Namun demikian, ada juga penelitian yang melaporkan bahwa beberapa strain Azospirillum tidak menghasilkan senyawa anti patogen.

Perilaku Azospirillum

Pertama sekali, bakteri ini mengolonisasi rhizosfer. Pelekatan pada sistem akar dimediasi oleh flagella dan setelah beberapa lama diikuti oleh penyatuan yang tidak dapat balik. Gambar 1 memperlihatkan model kolonisasi yang diusulkan oleh Steenhoudt and Vanderleyden. Flagella lateral tidak esensial pada fase penyerapan proses kolonisasi. Akan tetapi, bagaimanakah prilaku populasi bakteri pada sistem akar tanam ? masih tanda tanya. Apakah quorum sensing (QS) terlibat dalam proses? QS pernah terlihat mengatur pergerakan pada bermacam bakteri, khususnya Serratia (Reis et al., 2011) Pelekatan yang kuat dari Azospirillum pada akar tanaman merupakan faktor penting bagi asosiasi jangka panjang dengan akar tanaman. Ini dikarenakan tiga hal. Pertama, jika bakteri tidak melekat pada sel epidermis akar, maka senyawa-senyawa yang diekskresi oleh bakteri akan berdifusi ke daerah rhizosfer dan nutrisinya dikonsumsi oleh mikroorganisme lainnya sebelum mencapai tanaman. Ketika bakteri melekat pada akar, maka sebagian dari senyawa-senyawa tersebut akan berdifusi ke dalam ruang interseluler korteks akar. Kedua, tanpa pelekatan yang kuat, air dapat mengangkut bakteri sehingga menjauh dari daerah rhizosplan dan hidup sekarat di lingkungan tanah yang miskin unsur hara. Azospirillum pada umumnya hidup menderita pada kebanyakan tanah tanpa tanaman inang. Ketiga, daerah asosiasi pada akar tanpa Azospirillum melekat kuat menjadi rentan dari koloni lain yang agresif yang mungkin merugikan (Bashan dan Holguin, 1997). Belakangan diketaui bahwa sel-sel Azospirillum tidak terpencar oleh air perkolasi, tetapi terjerap ke dalam partikel tanah. Pada tanah jenuh air tanpa tanaman, Azospirillum tetap berada pada daerah inokulasi dan tidak bergerak. Oleh karenanya, masuk akal untuk berasumsi bahwa ada mekanisme penyebaran bakteri lain yang efisien, misalnya kemotaksis (Bashan dan Holguin, 1997). Gambar 1. Azospirillum melekat pada akar tanaman (Bashan dan Holguin, 1997). Pada kondisi tercekam, bakteri ini mampu membentuk cyst dan floc (agregat makro). Kedua bentuk tersebut meningkatkan daya hidup bakteri. Fenomena ini dapat terjadi akibat umur, kondisi kultur, metal beracun, atau cekaman air. Bentuk cyst Azospirillum brasilensis, yang awalnya dianggap dorman, dijumpai secara fisiologis aktif. Cyst ini mampu mengikat nitrogen tanpa kehadiran sumber karbon luar. Pada kultur yang terus menerus dan kondisi anaerobik, sel cyst Azospirillum brasilense SP-7 dan Sp-245 memperlihatkan aktivitas enzim nitrat reduktase (Cassa´n, 2011).

Isolasi Azospirillum spp.

Menurut Eckert et al. (2001) isolasi Azospirillum spp. dapat dilakukan dengan cara sebagai berikut. Akar tanaman tertentu dan tanah rhizosfer diambil dari lapangan di mana tanaman tersebut telah tumbuh lama di sana. Akar-akar tanaman dicuci dengan air steril dan kemudian digerus dalam larutan sukrosa 4% dengan menggunakan mortar dan pastel. Wadah kecil (sekitar 10 ml) yang mengandung 5 ml medium NFb semi-solid bebas nitrogen diinokulasi dengan larutan berseri dari gerusan akar atau suspensi tanah rhizosfer. Komposisi medium NFb adalah sebagai berikut (L-1): malat (5,0 g), K2HPO4 (0,5 g), MgSO4.7H2O (0,2 g), NaCl (0,1 g), CaCl2.2H2) (0,02 g), bromothymol blue 0,5% dalam KOH 0,2 M (2 mL), larutan vitamin filter steril (1 mL), larutan hara mikro filter steril (2 mL), 1,64 % larutan FeEDTA (4 mL), KOH (4,5 g). Keasaman (pH) disesuaikan menjadi 6,5 dan 1,8 gL-1agar ditambahkan. Larutan vitamin (dalam 100 mL) mengandung biotin (10 mg) dan pyridoxol-HCl (20 mg) dilarutkan pada 100 ⁰C dalam water bath. Larutan hara mikro terdiri dari bahan-bahan sebagai berikut (L-1):CuSO4.5H2O (40 mg), ZnSO4.7H2O (0,12 g), H2BO3 (1,4 g), Na2MO4.2H2O (1,0 g), MnSO4.H2O (1,175 g. Setelah inkubasi 3 – 5 hari pada suhu 30 ⁰C, satu lup kultur ditransfer ke dalam medium semi-solid segar. Pemurnian lebih lanjut dilakukan pada NFb (diberi suplemen 50 mg ekstrak ragi per liter) dan medium DYGS setengah konsentrasi pada media agar. Kultur ini dipelihara pada medium DYGS setengah konsentrasi yang mengandung bahan-bahan sebagai berikut (L-1): glukosa (1,0 g), malat (1,0 g), ekstrak ragi (2,0 g), pepton (1,5 g), MgSO4.7H2O (0,5 g), L-asam glutamat (1,5 g) dan pH disesuaikan menjadi 6,0.

Genus Azospirillum

Menurut Reis et al. (2011), Azospirillum adalah bakteri gram negatif, termasuk dalam phylum alphaproteobacteria. Bakteri ini hidup pada lingkungan dan tanaman yang beraneka ragam, tidak hanya tanaman agronomi yang penting, seperti sereal, tebu, rumput, tetapi juga pada tanaman lain seperti kopi, buah-buahan dan bunga-bungaan. Azospirillum adalah bakteri aerobik kemoorganotrop non-fermentatif, vibroid dan memproduksi fitohormon, terutama auksin. Mereka menggunakan beberapa sumber karbon terutama gula dan alkohol gula. Sampai saat ini, setidaknya telah ditemukan 15 spesies Azospirillum. Nama spesiesAzospirillum yang telah ditemukan beserta sumber karbonnya dapat dilihat pada Tabel 1. Namun demikian, dari sisi fisiologi dan genetik, ada dua spesies yang paling banyak dipelajari, yaitu A. brasilense dan A. lipoferum. Di dalam tanah, keduanya terdapat dalam jumlah yang banyak, khususnya di daerah tropis, yang berasosiasi dengan tanaman rumput, jagung, padi, sorgum, tebu, dan beberapa tanaman lainnya. Namun demikian, selain berasosiasi dengan tanaman, kedua bakteri ini juga berasosiasi dengan kondisi lingkungan lainnya, di bawah suhu tinggi dan kontaminasi. Spesies ketiga adalah A. amazonense, yang diisolasi dan dideskripsi pada tahun 1983 dari tanaman rumput yang ditanam di daerah Amazon. Spesies ini juga berasosiasi dengan tanaman padi, jagung, dan sorgum serta tanaman rumput lainnya yang tumbuh di bagian Selatan Tengah Brasil. Spesies yang keempat adalah A. halopraeferans. Spesies ini diisolasi dari rumput kallar (Leptochloa fusca), yang tumbuh di daerah salin di Pakistan dan kelihatannya spesifik pada tanaman tersebut, karena upaya untuk mengisolasi A. halopraeferans dari tanaman lain yang tumbuh di Brasil tidak berhasil. Berikut, spesies baru berhasil diisolasi dari tanaman padi di Irak. Spesies ini diberi nama A. irakense. Walaupun spesies ini belum ada dilaporkan diisolasi dari tanaman lain dan dari negara lain, tetapi spesies ini benar Azospirillum spesies baru. Berikutnya, pada tahun 1997, ditemukan spesies lain dari Conglomeromonas largomobilis subsp. largomobilis yang mirip dengan spesies A. lipoferum dan A. brasilense, tetapi secara nyata cukup berbeda. Spesies ini diberi nama A. largimobile.
Kelompok baru dari spesies Azospirillum terus ditemukan di seluruh dunia. Pada tahun 2001, di Brasil ditemukan spesies baru oleh ilmuwan Brasil Johanna Dobereiner. Untuk menghargai beliau, spesies ini diberi nama A. dobereinerae. Spesies lainnya diisolasi dari tanah pertanaman padi di China pada tahun 1982 dan diberi nama A. oryzae. Kemudian, spesies lain ditemukan dari akar dan batang tanaman Melinis minutiflora Beauv, sehingga diberi nama A. melinis. Pada tahun 2007, dengan menggunakan media semisolid pada pH 7,2 – 7,4, ditemukan dua spesies baru lagi di Kanada, yang diberi nama A. canadense dan A. zeae. Satu spesies baru berhasil diisolasi dari tanah yang terkontaminasi minyak oleh peneliti Taiwan yang menggunakan nutrisi agar. Spesies tersebut diberi nama A. rugosum. Pada tahun 2009, dua spesies baru berhasil ditemukan lagi, yaitu A. palatum dan A. picis. A. palatum diisolasi dari tanah di China dan A. picis di Taiwan. Terakhir, spesies baru A. thiophilum diisolasi dari Rusia. Walaupun spesies ini memiliki hubungan yang erat dengan spesies Azospirillum lainnya, tetapi spesies ini mampu tumbuh sebagai miksotropik pada kondisi yang mikroaerobik. Tabel 1. Spesies Azospirillum dan pola penggunaan sumber karbonnya (Reis et al. 2011) Simbol: + (positif), – (negatif), v (variabel atau tidak konsisten), nd (not determined)

Azospirillum

Azospirillum adalah bakteri yang hidup di daerah perakaran tanaman. Bakteri ini berkembang biak terutama pada daerah perpanjangan akar dan pangkal bulu akar. Sumber energi yang mereka sukai adalah asam organik seperti malat, suksinat, laktat, dan piruvat (Hanafiah et al., 2009). Azospirillum termasuk bakteri yang hampir dilupakan orang. Sejarahnya, menurut Holguin et al. (1999), Azospirillum pertama sekali diisolasi dari tanah berpasir yang miskin unsur nitrogen di Belanda. Akan tetapi, manfaat dari penemuan ini tidak disadari selama lebih dari 50 tahun sampai Döbereiner and Day pada tahun 1976 melaporkan bahwa rumput yang berasosiasi dengan Azospirillum tidak menunjukkan gejala kekurangan nitrogen dibandingkan dengan rumput sekitarnya yang tanpa Azospirillum. Sejak saat itu, diketahuilah bahwa anggota genus bakteri ini mampu menambat nitrogen atmosfer dan memacu pertumbuhan tanaman. Pernah suatu ketika, orang berpikir bahwa telah ditemukan bakteri penambat N pada tanam sereal yang serupa dengan bakteri pada kacang-kacangan. Hal ini karena inokulasi denganAzospirillum spp. dapat meningkatkan hasil sereal di lapangan hingga 30%, bahkan dengan kenaikan yang lebih besar di bawah kondisi rumah kaca. Namun, hasil ini tidak selalu konsisten dan bila diulang sulit mendapatkan hasil yang sama. Faktor yang bertanggung jawab atas penyimpangan hasil ini belum
teridentifikasi, terutama karena atribut hubungan antara tanaman-Azospirillum belum dipahami dengan baik. Tidak seperti Rhizobium, inokulasi tanaman dengan Azospirillum tidak menimbulkan nodulasi pada akar tanaman. Oleh karena itu, bagaimana mekanisme bakteri ini membantu pertumbuhan tanaman tidak sama dengan Rhizobium yang kita kenal. Di antara modus yang diusulkan antara lain: sekresi fitohormon, fiksasi nitrogen, produksi molekul isyarat, produksi nitrit, dan peningkatan penyerapan mineral oleh tanaman. Karena tidak ada bukti yang cukup untuk mendukung gagasan dari salah satu mekanisme tersebut, maka satu hipotesis aditif telah diusulkan oleh Basan dan Levanony tahun 1990. Gagasan aditif ini mengusulkan bahwa efek menguntungkan dari inokulasi Azospirillum terhadap pertumbuhan tanaman adalah hasil dari semua mekanisme yang disebutkan di atas secara bersamaan atau berurutan (Holguin et al. 1999)

Bakteri Pupuk Hayati - Azospirillum

Produktivitas pertanian saat ini sebagian besar didukung oleh penggunaan bahan kimia yang intensif. Sayangnya, penggunaan bahan kimia ini tidak dilakukan dengan bijaksana. Pestisida digunakan tanpa aturan dan pupuk anorganik digunakan secara berlebihan. Akibatnya, lingkungan menjadi rusak. Banyak ekosistem di sekitar daerah pertanian telah menjadi mati akibat terjadinya ketidakseimbangan pada rantai makanan. Pada suatu titik, bila tidak ada perubahan paradigma, maka produk pertanian akan bermasalah, kuantitas dan mutunya akan terus semakin menurun Dewasa ini pupuk anorganik menjadi andalan utama dalam mempertahankan dan meningkatkan produktivitas pertanian. Namun, penggunaannya sudah sangat berlebihan dari yang sebenarnya diperlukan oleh tanaman. Dari seluruh jenis pupuk anorganik yang digunakan sebagai input pada pertanian, maka pupuk nitrogen (N) merupakan yang paling banyak dan intensif digunakan petani. Oleh karenanya, pupuk N anorganik inilah yang paling banyak disalahgunakan. Menurut Cummings dan Orr (2010) kendatipun aplikasi pupuk N anorganik telah memberikan keuntungan yang nyata pada produksi pangan dan ketahanan pangan dunia dalam jangka pendek, namun ada keprihatinan yang meluas terhadap keberlanjutan penggunaan teknologi ini untuk jangka panjang agar dapat terus memberi makan seluruh populasi dunia yang terus meningkat. Penggunaan pupuk N anorganik secara terus menerus akan menyebabkan perusakan tanah pertanian, antara lain sebagai akibat dari hilangnya bahan organik, pemadatan tanah, peningkatan salinitas, dan pencucian nitrat anorganik. Untuk mengurangi ketergantungan pada pupuk nitrogen anorganik, diperlukan terobosan baru di bidang pertanian. 
Ada beberapa pendekatan yang bisa dilakukan antara lain irigasi mikro, pertanian organik, eko-pertanian, dan pemanfaatan bakteri akar pemacu pertumbuhan tanaman (BPPT). Dari pilihan yang tersedia saat ini, maka pemanfaatan BPPT merupakan opsi yang menjanjikan. Selain secara ekonomi sangat menguntungkan, BPPT juga sangat ramah lingkungan sehingga diharapkan peningkatan produktivitas hasil pertanian dapat terus berkesinambungan selamanya. Menurut Aeron et al. (2011) ada beberapa jenis mikroba yang berpotensi untuk dimanfaatkan. 
Bakteri tersebut antara lain Actinoplanes, Agrobacterium, Alcaligens, Amorphosporangium, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Cellulomonas, Enterobacter, Erwinia, Flavobacterium, Gluconacetobacter, Microbacterium, Micromonospora, Pseudomonas, Rhizobia, Serratia, Streptomyces, Xanthomonas. Bakteri ini hidup baik di daerah rhizosfer, sehingga mereka diberi nama rhizobakteri. Namun, artikel ini memfokuskan pada bakteri Azospirillum.

Bakteri Bacillus sp.

Morfologi Bacillus sp.

 Bacillus sp. merupakan bakteri berbentuk batang (basil), dan tergolong dalam bakteri  grampositif yang umumnya tumbuh pada medium yang mengandung oksigen (bersifat aerobik) sehingga dikenal pula dengan istilah aerobic sporefomers. Kebanyakan anggota genus Bacillus sp. dapat membentuk endospora yang dibentuk secara intraseluler sebagai respon terhadap kondisi lingkungan yang kurangmenguntungkan, oleh karena itu anggota genus Bacillus sp. memiliki toleransi yang tinggi terhadap kondisi lingkungan yang berubah-ubah. Beberapa anggota Bacillus sp. memiliki S-layer yang merupakan lapisan crystalline dipermukaan subunit protein atau glikoprotein. Bagian kapsul kebanyakan anggota Bacillus sp.mengandung D atau L- glutamic acid, sedangkan beberapa lainnya memiliki kapsul yang mengandung karbohidrat. Variasi struktur dinding sel seperti padakebanyakan bakteri gram negatif tidak ditemukan pada genus Bacillus sp. Dinding sel vegetatif kebanyakan anggota Bacillus sp. terbuat dari peptidoglikan yang mengandung Meso-Diaminopimelic Acid(DAP) dengan tipe Glyserol Teichoic Acid sangat bervariasi diantara spesies. Kebanyakan anggota genusBacillus sp. merupakan bakteri yang bersifatmotil dan memiliki flagela tipe peritrik. Bacillus sp.digolongkan ke dalam kelas bakteri heterotrofik, yaitu protista bersifat uniseluler, termasuk dalam golongan mikroorganisme redusen atau yang lazim disebut sebagai dekomposer. Sebagian besar bakteri laut termasuk dalam kelompok bakteri bersifat heterotrofik dan saprofitik (Rheinheimer, 1980).
Jenis Bacillus sp. menunjukkan bentuk koloni yang berbeda-beda pada medium agar. Warna koloni pada umumnya putih sampai kekuningan atau putih suram, tepi koloni bermacam-macam namun pada umumnya tidak rata, permukaannya kasar dan tidak berlendir, bahkan ada yang cenderung kering berbubuk, koloni besar dan tidak mengkilat. Bentuk koloni dan ukurannya sangat bervariasi tergantung dari jenisnya. Selain itu setiap jenis juga menunjukkan kemampuan dan ketahanan yang berbeda-beda dalam menghadapi kondisi lingkungannya, misalnya ketahanan terhadap panas, asam, kadar garam, dan sebagainya(Rheinheimer, 1980).
Bakteri Bacillus sp. biasanya banyak ditemukan di tanah. Cara untuk mendapatkan bakteri Bacillus sp. yaitu dengan mengambil sampel tanah menggunakan sendok yang telah disterilisasikan terlebih dahulu kemudian ambil tanah sekitar kedalaman 3 cm dari permukaan tanah. Bacillus sp. merupakan bakteri gram positif dengan sel batang berukuran 0,3-22×1,27-7 μm, sebagian bersifat motil (mampu bergerak), mobilitasnya ini disebabkan oleh flagel yang jika dipanaskan akan membentuk endospora, yaitu bentuk dorman sel vegetatif sebagai bentuk pertahanan diri yang muncul saat kondisi ekstrim yang tidak menguntungkan bagi bakteri. Kandungan air endospora sangat rendah bila dibandingkan dengan sel vegetatifnya, maka endospora berbentuk sangat padat dan sangat refraktil bila dilihat di bawah mikroskop. Endospora dibentuk dalam sporangium di dalam sel dan dibentuk saat sel masak. Endospora memiliki dinding tebal, reaktif, dan sangat resisten. Letak endospora dalam sel ukuran selama pembentukannya tidak sama antara spesies satu dengan lainnya. Beberapa spesies memiliki spora sentral, terminal, atau letal. Endospora dapat berbentuk oval, silindris, bulat, atau lainnya.Bacillus sp. bersifat aerob sampai anaerob fakultatif, metabolisme dengan fermentasi dan respirasi. Isolat-isolat murni tersebut dipelihara dalam medium agar miring.
Untuk memastikan bahwa koloni-koloni tersebut adalah Bacillus, maka dilakukan serangkaian pengujian yang bersifat spesifik yaitu pengecatan gram, pengecetan negatif dan motilitasnya. Bacillusdibedakan dari anggota familia Bacillaceae lainnya berdasarkan sifat-sifatnya yaitu: keseluruhannya merupakan pembentuk spora, hidup pada kondisi aerob baik sebagai jasad yang sepenuhnya aerob maupun aerob fakultatif, selnya berbentuk batang, dan memproduksi katalase (Priyani, 2006).
Distribusi Geografik
Bacillus sp. merupakan bakteri gram-positif yang berbentuk batang,dan secara alami sering ditemukan di tanah dan vegetasi. Bacillus sp.tumbuh di berbagai mesofilik suhu berkisar 25-35 derajat Celsius.Bacillus sp. juga telah berevolusi sehingga dapat hidup walaupun di bawah kondisi keras dan lebih cepat mendapatkan perlindungan terhadap stres situasi seperti kondisi pH rendah (asam), bersifat alkali, osmosa, atau kondisi oksidatif, dan panas atau etanol Bakteri ini hanya memiliki satu molekul DNA yang berisi seperangkat set kromosom. Beberapa keunggulan dari bakteri ini adalah mampu mensekresikan antibiotik dalam jumlah besar ke luar dari sel (Scetzer, 2006).
Pengecatan
Pewarnaan Gram atau metode Gram adalah salah satu teknik pewarnaan yang paling penting dan luas yang digunakan untuk mengidentifikasi kuman Bacillus sp. Pengecatan gram digunakan untuk mengidentifikasi kuman Bacillus sp. Bakteri Gram positif akan mempertahankan zat pewarna kristal violet dan karenanya akan tampak berwarna ungu tua di bawah mikroskop. Adapun bakteri gram negatif akan kehilangan zat pewarna kristal violet setelah dicuci dengan alkohol, dan sewaktu diberi zat pewarna tandingannya yaitu dengan zat pewarna air fuchsin atau safranin akan tampak berwarna merah. Perbedaan warna ini disebabkan oleh perbedaan dalam struktur kimiawi dinding selnya.Bakteri gram positif dinding selnya tersusun oleh peptidoglikan dalam jumlah besar (Harley dan Presscot, 2002).
Pewarnaan Gram adalah teknik pewarnaan differensial yang paling banyak digunakan dalam bakteriologi. Pewarnaan ini memisahkan bakteri menjadi dua kelompok, yaitu gram positif dan gram negatif. Larutan yang digunakan dalam pewarnaan ini ada 4, yaitu Gram A, Gram B, Gram C dan Gram D. Langkah pertama pewarnaan ini adalah menggunakan larutan Gram A, berupa cat kristal violet (Hucker’s violet) yang member warna ungu pada sel bakteri. Setelah itu, preparat ditetesi dengan larutan Gram B berupa iodine (Lugul Iodine) yang berfungsi sebagai penguat warna cat sebelumnya. Iodin akan meningkatkan interaksi antara dinding sel bakteri dan pewarna gram A. Selanjutnya preparat akan ditetesi dengan larutan Gram C berupa zat peluntur seperti aseton atau alkohol. Karena perbedaan struktur dinding sel, yaitu ketebalan peptidoglikannya, bakteri gram positif yang memiliki dinding peptidoglikan tebal tidak akan luntur warnanya, sementara bakteri gram positif yang dinding peptidoglikannya tipis, akan luntur warnanya. Selanjutnya, preparat akan diberi larutan Gram D berupa pewarna pembanding yang kontras dengan pewarna utama. Safranin adalah pewarna pembanding yang paling umum digunakan. Safranin akan mewarnai bakteri gram negatif yang tak berwarna, tapi tidak akan mengubah warna bakteri gram positif. Hasil akhirnya adalah bakteri gram positif akan berwarna ungu gelap, sementara bakteri gram negatif akan berwarna dadu atau merah (Harley dan Presscot, 2002).
Agen Penyakit
Bacillus sp. merupakan agen penyakit dari beberapa penyakit seperti infeksi kulit, paru, usus, dan selaput otak. Selain itu, beberapa tipe Bacillus sp. dipastikan sebagai penyebab suatu kasus keracunan makanan, apabila hasil isolasi Bacillus sp. menunjukkan bahwa strain-strain dari serotip yang samaditemukan pada makanan yang dicurigai dan dari kotoran atau muntahan pasien, atau hasil isolasi bakteri dari makanan yang dicurigai, kotoran, atau muntahan pasienmenunjukkan adanya sejumlah besar Bacillus cereus dari serotip yang dikenal sebagaipenyebab
keracunan makanan. Keracunan pangan yang diakibatkan oleh Bacillus sp. ditunjukkan dari gejala diare, kejang (kram) perut, dan muntah (Akoso, 2009).

Efek Lainnya Dari Auksin

Efek Lainnya Dari Auksin


Auksin Sebagai Herbisida

Auksin Sebagai Herbisida


Auksin sintetis, seperti halnya 2,4-dinitrofenol (2,4-D), digunakan secara meluas  sebagai herbisida tumbuhan. Pada Monocotyledoneae, misalnya : jagung dan rumput  lainnya dapat dengan cepat menginaktifkan auksin sintetik ini, tetapi pada  Dicotyledoneae tidak terjadi, bahkan tanamannya mati karena terlalu banyak dosis  hormonalnya. Menyemprot beberapa tumbuhan serialia ataupun padang rumput dengan  2,4-D, akan mengeliminir gulma berdaun lebar seperti dandelion.

Auksin dalam Pembentukan Akar Lateral dan Akar Adventif

Auksin dalam Pembentukan Akar Lateral dan Akar Adventif


Auksin digunakan secara komersial di dalam perbanyakan vegetatif tumbuhan  melalui stek. Suatu potongan daun, maupun potongan batang, yang diberi serbuk  pengakaran yang mengandung auksin, seringkali menyebabkan terbentuknya akar  adventif dekat permukaan potongan tadi. 
Auksin juga terlibat di dalam pembentukan percabangan akar. Beberapa peneliti  menemukan bahwa dalam mutan Arabidopsis, yang memperlihatkan perbanyakan akar lateral yang ekstrim ternyata mengandung auksin dengan konsentrasi 17 kali lipat dari  konsentrasi yang normal.

Peranan Auksin Di Dalam Perpanjangan Sel

Peranan Auksin Di Dalam Perpanjangan Sel

Meristem tunas apikal adalah tempat utama sintesis auksin. Pada saat auksin bergerak dari ujung tunas ke bawah ke daerah perpanjangan sel, maka hormon auksin mengstimulasi pertumbuhan sel, mungkin dengan mengikat reseptor yang dibangun di dalam membran plasma.
Auksin akan menstimulasi pertumbuhan hanya pada kisaran konsentrasi tertentu; yaitu antara : 10-8 M sampai 10-4 M. Pada konsentrasi yang lebih tinggi; auksin akan menghambat perpanjangan sel, mungkin dengan menginduksi produksi etilen, yaitu suatu hormon yang pada umumnya berperan sebagai inhibitor pada perpanjangan sel.

Berdasarkan suatu hipotesis yang disebut hipotesis pertumbuhan asam (acid growth hypothesis), pemompaan proton membran plasma memegang peranan utama dalam respon pertumbuhan sel terhadap auksin. Di daerah perpanjangan tunas, auksin menstimulasi pemompaan proton membran plasma, dan dalam beberapa menit; auksin akan meningkatkan potensial membran (tekanan melewati membran) dan menurunkan pH di dalam dinding sel. Pengasaman dinding sel ini, akan mengaktifkan enzim yang disebut ekspansin; yang memecahkan ikatan hidrogen antara mikrofibril sellulose, dan melonggarkan struktur dinding sel. Ekspansin dapat melemahkan integritas kertas saring yang dibuat dari sellulose murni.

Penambahan potensial membran, akan meningkatkan pengambilan ion ke dalam sel, yang menyebabkan pengambilan air secara osmosis. Pengambilan air, bersama dengan penambahan plastisitas dinding sel, memungkinkan sel untuk memanjang. 
Auksin juga mengubah ekspresi gen secara cepat, yang menyebabkan sel dalam daerah perpanjangan, memproduksi protein baru, dalam jangka waktu beberapa menit. Beberapa protein, merupakan faktor transkripsi yang secara menekan ataupun mengaktifkan ekspresi gen lainnya. Untuk pertumbuhan selanjutnya, setelah dorongan awal ini, sel akan membuat lagi sitoplasma dan bahan dinding sel. Auksin juga menstimulasi respon pertumbuhan selanjutnya.

Auksin

Auksin

Istilah auksin diberikan pada sekelompok senyawa kimia yang memiliki fungsi  utama mendorong pemanjangan kuncup yang sedang berkembang. Beberapa  auksindihasikan secara alami oleh tumbuhan, misalnya IAA (indoleacetic acid), PAA (Phenylacetic acid), 4-chloroIAA (4-chloroindole acetic acid) dan IBA (indolebutyric acid) dan beberapa lainnya merupakan auksin sintetik, misalnya NAA (napthalene acetic acid), 2,4 D (2,4 dichlorophenoxyacetic acid) dan MCPA (2-methyl-4 chlorophenoxyacetic acid) .

Istilah auksin juga digunakan untuk zat kimia yang meningkatkan perpanjangan auksin koleoptil; walaupun demikian, pada kenyataannya mempunyai fungsi ganda pada Monocotyledoneae maupun pada Dicotyledoneae. Auksin alami yang berada di dalam tumbuhan, adalah asam indol asetat (IAA=Indol Asetic Acid), akan tetapi, beberapa senyawa lainnya, termasuk beberapa sintetisnya, mempunyai aktivitas seperti auksin. Nama auksin digunakan khususnya terhadap IAA. Walaupun auksin merupakan hormon tumbuhan pertama yang ditemukan, namun masih banyak yang harus dipelajari tentang transduksi sinyal auksin dan tentang regulasi biosintesis auksin. Kenyataan sekarang mengemukakan bahwa auksin diproduksi dari asam amino triptopan di dalam ujung tajuk tumbuhan.

Pengaruh IAA terhadap pertumbuhan batang dan akar tanaman kacang kapri. Kecambah yang diberi perlakuan IAA menunjukkan pertambahan tinggi yang lebih besar (kanan) dari tanaman kontrol (kurva hitam). Tempat sintesis utama auksin pada tanaman yaitu di daerah meristem apikal tunas ujung. IAA yang diproduksi di tunas ujung tersebut diangkut ke bagian bawah dan berfungsi mendorong pemanjangan sel batang. IAA mendorong pemanjangan sel batang hanya pada konsentrasi tertentu yaitu 0,9 g/l. Di atas konsentrasi tersebut IAA akan menghambat pemanjangan sel batang.

Fungsi Giberelin Pada Tanaman

SEJARAH SINGKAT GIBERELIN

Sejarah giberelin sedikit unik. Awal mulanya giberelin ditemukan oleh Eiichi Kurowasa, orang Jepang, pada tahun 1926. Pada tahun itu Pangeran Diponegoro sedang giat-giatnya berperang melawan penjajah londo. Kurosawa sebenarnya sedang meneliti tentang penyakit aneh pada padi yang disebut ‘bakane’. Padi yang terserang penyakit ini tumbuh membesar tidak normal. Batang dan daunnya membesar dan memanjang. Kurosawa berhasil mengisolasi jamur penyebab penyakit ini yang dinamakan Giberrella fujikori. Ketika jamur ini diinfeksikan ke tanaman yang sehat, tanaman yang sehat memperlihatkan gejala itu. Ya…mengikuti postulat Koch yang terkenal itu.
Kurang lebih satu dasawarsa kemudian penelitian ini dilanjutkan oleh Yabuta dan Hayashi tahun 1939. Kedua orang jepang ini melangkah lebih maju dan berhasil mengisolasi kristal protein yang dihasilkan oleh Giberrella fujikori. Kristal ini bisa menstimulasi pertumbuhan akar kecambah.
Setelah perang dunia ke dua, pada tahun 1951 Stodola dan teman-temannya melanjutkan penelitian ini dan menemukan ‘Giberelin A’ dan ‘Giberelin X’. Hasil penelitian selanjutnya ditemukan varian dari giberelin, yaitu GA1, GA2, dan GA3. Pada saat yang hampir bersamaan dilakukan penelitian juga di Laboratory of the Imperial Chemical Industries di Inggris. Dari penelitian ini juga ditemukan GA3. Selanjutnya nama Gibberellic acid disepakati oleh kelompok peneliti itu dan populer hingga jaman sekarang.
Saat ini telah ditemukan tidak kurang dari 126 macam giberelin. Giberelin diberi nama dengan GAn….., diurutkan berdasarkan urutan ditemukannya senyawa giberlin tersebut. Giberelin yang ditemukan pertama kali adalah GA3.

KARAKTERISTIK KIMIA GIBERELIN


Semua giberelin yang ditemukan adalah senyawa diterpenoid. Semua kelompok terpinoid terbentuk dari unit isoprene yang memiliki 5 atom karbon (C). Unit-unit isoprene ini dapat bergabung menghasilkan monoterpene (C-10), sesqueterpene (C-15), diterpene (C-20), dan triterpene (C-30). Asam diterpenoid disintesis melalui jalur terpenoid dan dimodifikasi di dalam retikulum endoplasma dan sitosol sampai menjadi senyawa yang aktif.
Semua molekul giberelin mengandung ‘Gibban Skeleton’. Giberelin dapat dikelompokkan mejadi dua kelompok berdasarkan jumlah atom C, yaitu yang mengandung 19 atom C dan 20 atom C. Sedangkan berdasarkan posisi gugus hydroksil dapat dibedakan menjadi gugu hidroksil yang berada di atom C nomor 3 dan nomor 13.
Penelitian lebih lanjut juga menemukan beberapa senyawa lain yang memiliki fungsi seperti giberelin tetapi tidak memiliki ‘Gibban Skeleton’.
Struktur Ent-Gibberellane (gibbal skeleton)

Struktur GA 1

Struktur GA3

FUNGSI FISIOLOGIS GIBERELIN


Fungsi giberelin pada tanaman sangat banyak dan tergantung pada jenis giberelin yang ada di dalam tanaman tersebut. Beberapa proses fisiologi yang dirangsang oleh giberelin antara lain adalah seperti di bawah ini(Davies, 1995; Mauseth, 1991; Raven, 1992; Salisbury dan Ross, 1992).
 Merangsang batang dengan merangsang pembelahan sel dan perpanjangan.
 Merangsang lari / berbunga dalam menanggapi hari panjang.
 Breaks dormansi benih di beberapa tanaman yang memerlukan stratifikasi atau cahaya untuk menginduksi perkecambahan.
 Merangsang produksi enzim (a-amilase) di germinating butir serealia untuk mobilisasi cadangan benih.
 Menginduksi maleness di bunga dioecious (ekspresi seksual).
 Dapat menyebabkan parthenocarpic (tanpa biji) pengembangan buah.
 Dapatkah penundaan penuaan dalam daun dan buah jeruk.
 Genetik Dwarsfism

Penjelasan singkat dari masing-masing fungsi fisiologis tersebut.

Pembungaan

Peranan giberelin terhadap pembungaan telah dibuktikan oleh banyak penelitian. Misalnya penelitian yang dilakukan oleh Henny (1981), pemberian GA3 pada tanaman Spathiphyllum mauna. Ternyata pemberian GA3 meningkatkan pembungaan setelah beberapa minggu perlakuan.

Genetik Dwarsfism

Genetik Dwarsfism adalah suatu gejala kerdil yang disebabkan oleh adanya mutasi genetik. Penyemprotan giberelin pada tanaman yang kerdil bisa mengubah tanaman kerdil menjadi tinggi. Sel-sel pada tanaman kerdil mengalami perpanjangan (elongation) karena pengaruh giberelin. Giberelin mendukung perkembangan dinding sel menjadi memanjang. Penelitian lain juga menemukan bahwa pemberian giberelin merangsang pembentukan enzim proteolitik yang akan membebaskan tryptophan (senyawa asal auksin). Hal ini menjelaskan fonomena peningkatan kandungan auksin karena pemberian giberelin.

Pematangan Buah

Proses pematangan ditandai dengan perubahan teksture, warna, rasa, dan aroma. Pemberian giberelin dapat memperlambat pematangan buah. Beberapa penelitian menunjukkan bahwa aplikasi giberelin pada buah tomat dapat memperlambat pematangan buah. Pengaruh ini juga terlihat pada buah pisang matang yang diberi aplikasi giberelin.

Perkecambahan

Biji/benih tanaman terdiri dari embrio dan endosperm. Di dalam endoperm terdapat pati yang dikelilingi oleh lapisan yang dinamakan ‘aleuron’. Pertumbuhan embrio tergantung pada ketersediaan nutrisi untuk tumbuh. Giberelin meningkatkan/merangsang aktivitas enzim amilase yang akan merubah pati menjadi gula sehingga dapat dimanfaatkan oleh embrio.

Stimulasi aktivitas kambium dan xylem

Beberapa penelitian membuktikan bahwa aplikasi giberelin mempengaruhi aktivitas kambium dan xylem. Pemberian giberelin memicu terjadinya differensiasi xylem pada pucuk tanaman. Kombinasi pemberian giberelin + auksin menunjukkan pengaruh sinergistik pada xylem. sedangkan pemberian auksin saja tidak memberikan pengaruh pad xylem.

Dormansi

Dormansi dapat diistilahkan sebagai masa istirahan pada tanaman. Proses dormansi merupakan proses yang komplek dan dipengaruhi banyak faktor. Penelitian yang dilakukan oleh Warner menunjukkan bahwa aplikasi giberelin menstimulasi sintesis ribonuklease, amulase, dan proteasi pada endosperm biji. Fase akhir dormansi adalah fase perkecambahan, giberelin perperan dalam fase perkecambahan ini seperti yang telah dijelaskan di atas.

Sunday, 15 February 2015

Sektor Peternakan, Mesin Penggerak Pembangunan Nasional

Peternakan adalah kegiatan mengembangbiakkan dan membudidayakan hewan ternak untuk mendapatkan manfaat dan hasil dari kegiatan tersebut. Tujuan peternakan adalah mencari keuntungan dengan penerapan prinsip-prinsip manajemen pada faktor-faktor produksi yang telah dikombinasikan secara optimal. Salah satu parameter yang dapat dipergunakan untuk mengukur keberhasilan suatu usaha adalah tingkat keuntungan yang diperoleh dengan cara pemanfaatan faktor-faktor produksi secara efisien.
Pengertian produksi itu sendiri adalah suatu kegiatan mengolah atau menambah nilai guna suatu barang menjadi barang setengah jadi ataupun barang jadi. Pelaku bisnis peternakan ayam petelur sering dihadapkan pada situasi dimana ayam petelurnya tidak mampu berproduksi secara optimal. Hasil penelitian Sumartini (2004) menemukan bahwa rendahnya pendapatan, cenderung sebagai akibat kurang transparannya dalam penentuan harga kontrak baik harga input maupun harga output. Biaya produksi yang timbul akibat adanya kegiatan produksi, mempengaruhi perolehan keuntungan para peternak. Dalam penelitian Rita Yunus (2009) mengatakan bahwa kombinasi penggunaan faktor-faktor produksi diusahakan sedemikian rupa agar dalam jumlah tertentu menghasilkan produksi maksimum dan keuntungan tertinggi.

Pemberian pakan terhadap ternak merupakan faktor utama dalam menentukan hasil produksi. Pakan ayam merupakan biaya variabel terbesar yaitu > 60% dari total biaya produksi. Dengan adanya permasalahan yang timbul akibat naiknya harga pakan, maka secara otomatis biaya produksi akan mengalami kenaikan. Dampak kenaikan harga produksi akan berpengaruh terhadap harga jual telur di pasaran. Selain itu, komposisi pakan yang tidak sesuai dengan kebutuhan ayam berdasarkan tingkat umur, serta takaran atau campuran pakan ayam akan mengakibatkan ketidakseimbangan dalam proses produksi. Pemberian jumlah pakan yang tidak sesuai dengan standar kebutuhan ayam petelur, akan menyebabkan kerugian dalam bentuk peningkatan biaya produksi pakan ataupun penurunan produksi telur, contohnya : ayam yang berumur 25 minggu (dalam masa puncak produksi) normalnya diberikan 125 gram pakan per hari, jika ayam diberi makan lebih dari standarnya akan mengakibatkan penambahan biaya pakan namun untuk produksi telurnya tetap dan sebaliknya apabila pemberian pakan kurang dari standarnya akan mengakibatkan penurunan jumlah produksi.
Dalam mengelola usaha peternakan ayam, tiap peternak harus memahami unsur penting dalam produksi, yaitu ; breeding (pembibitan), feeding (pakan ternak), atau manajemen (pengelolaan usaha peternakan). Pengelolaan dan pemeliharaan ayam petelur membutuhkan penanganan khusus dan sangat penting untuk diperhatikan karena dengan pemeliharaan yang baik akan menghasilkan pertumbuhan ayam yang baik, kondisi ayam yang sehat, tingkat mortalitas yang rendah dan pada akhirnya akan menghasilkan ayam petelur dengan produksi telur yang tinggi. Keterbatasan pengetahuan peternak dalam memelihara ternaknya menjadi sebuah permasalahan dalam sektor peternakan. Pemberian vaksinasi dan komposisi pakan yang harus sesuai dengan umur ternak, waktu dalam pemberian makan ternak sesuai dengan kebutuhan ternak, perawatan dan mengurus kandang untuk menjaga kesehatan ayam dan kebersihan kandang, merupakan dasar dari pengetahuan peternak ayam petelur.
Pada saat ini pengembangan bidang peternakan semakin menjadi perhatian penting karena adanya program diversifikasi pangan untuk meningkatkan kualitas gizi masyarakat yang mana dalam kaitan ini peternakan merupakan sumber produksi pangan berkualitas tinggi, adanya permintaan konsumsi masyarakat akan produk peternakan masih jauh melebihi persediaan yang ada dan yang terakhir yaitu usaha ternak di pedesaan mampu memberikan tambahan pendapatan dan lapangan pekerjaan bagi keluarga petani dan masyarakat. Namun sektor peternakan pernah mengalami penurunan disaat perekonomian Indonesia di landa krisis moneter dan virus flu burung.
Menurut artikel Ilham Patu (2010), bahwa di Indonesia virus flu burung (H5N1) tersebut menyerang ternak ayam sejak bulan Oktober 2003 sampai dengan Februari 2005 yang mengakibatkan 14,7 juta ayam mati. Penyakit ini menimbulkan kematian yang sangat tinggi (hampir 90 %) pada beberapa peternakan dan menyebabkan kerugian ekonomi yang besar bagi peternak karena minat masyarakat untuk mengkonsumsi hasil peternakan seperti daging ataupun telur ayam menjadi berkurang. Selain itu krisis moneter juga mempengaruhi usaha ternak ayam petelur, dimana pada masa itu terjadi gejolak harga yang cukup signifikan, sehingga biaya produksi meningkat tajam sementara konsumsimasyarakat semakin menurun dan daya beli masyarakat menjadi semakin terbatas.
Sektor perternakan merupakan salah satu sektor penyedia pangan utama untuk menopang pertumbuhan industri. Hingga saat ini sektor perternakan sebagai mesin penggerak pembangunan nasional maupun daerah memegang peranan penting dalam perekonomian masyarakat.

Pengertian Agribisnis

Agribisnis adalah bisnis berbasis usaha pertanian atau bidang lain yang mendukungnya, baik di sektor hulu maupun di hilir. Penyebutan "hulu" dan "hilir" mengacu pada pandangan pokok bahwa agribisnis bekerja pada rantai sektor pangan (food supply chain). Agribisnis, dengan perkataan lain, adalah cara pandang ekonomi bagi usaha penyediaan pangan. Sebagai subjek akademik, agribisnis mempelajari strategi memperoleh keuntungan dengan mengelola aspek budidaya, penyediaan bahan baku, pascapanen, proses pengolahan, hingga tahap pemasaran. Dalam konteks manajemen agribisnis di dalam dunia akademik, setiap elemen dalam produksi dan distribusi pertanian dapat dijelaskan sebagai aktivitas agribisnis. Namun istilah "agribisnis" di masyarakat umum seringkali ditekankan pada ketergantungan berbagai sektor ini di dalam rantai produksi.
Istilah "agribisnis" diserap dari bahasa Inggris: agribusiness, yang merupakan lakuran dari agriculture (pertanian) dan business (bisnis). Dalam bahasa Indonesia dikenal pula varian anglisismenya, agrobisnis.
Objek agribisnis dapat berupa tumbuhan, hewan, ataupun organisme lainnya. Kegiatan budidaya merupakan inti (core) agribisnis, meskipun suatu perusahaan agribisnis tidak harus melakukan sendiri kegiatan ini. Apabila produk budidaya (hasil panen) dimanfaatkan oleh pengelola sendiri, kegiatan ini disebut pertanian subsisten, dan merupakan kegiatan agribisnis paling primitif. Pemanfaatan sendiri dapat berarti juga menjual atau menukar untuk memenuhi keperluan sehari-hari.
Dalam perkembangan masa kini agribisnis tidak hanya mencakup kepada industri makanan saja karena pemanfaatan produk pertanian telah berkaitan erat dengan farmasi, teknologi bahan, dan penyediaan energi.
FAO memiliki bagian yang beroperasi penuh pada pengembangan agribisnis yang bertujuan untuk meningkatkan pertumbuhan industri pangan di negara berkembang.
Agribisnis dapat mencakup bisnis yang memproduksi benih dan bahan kimia pertanian (seperti Dow AgroSciences, DuPont, Monsanto, dan Syngenta), pakan ternak, alat dan mesin pertanian (seperti John Deere), pemrosesan bahan pertanian, produksi biofuel, hingga wisata pertanian (seperti Purina Farms).
Biofuel yang dihasilkan dari tanaman pertanian saat ini mendapatkan perhatian masyarakat umum dan kaum akademisi karena isu perubahan iklim yang semakin intens dan peningkatan harga bahan bakar fosil. Di Eropa dan Amerika Serikat, penelitian dan produksi biofuel telah menjadi kewajiban yang diatur oleh undang-undang.
Studi agribisnis seringkali datang dari bidang akademik ekonomi pertanian dan manajemen, yang dapat disebut dengan manajemen agribisnis. Untuk meningkatkan pengembangan pada keekonomian bahan pangan, berbagai lembaga pemerintah mendukung penelitian dan publikasi studi keekonomian yang menjelajahi agribisnis dan praktek agribisnis. Federation of International Trade Associations (FITA) adalah salah satu lembaga internasional yang mempublikasikan hasil studi mengenai ekspor bahan pangan antar negara.
Di Indonesia, program studi Agribisnis dipelajari di berbagai perguruan tinggi:
•    Institut Pertanian Bogor melalui program studi Agribisnis Fakultas Ekonomi dan Manajemen.
•    Universitas Padjadjaran melalui program studi Agribisnis Fakultas Pertanian
•    Universitas Jambi melalui program studi Agribisnis Fakultas Pertanian



Sumber : http://id.wikipedia.org/wiki/Agribisnis

Pengertian Perikanan

Perikanan adalah kegiatan manusia yang berhubungan dengan pengelolaan dan pemanfaatan sumberdaya hayati perairan. Sumberdaya hayati perairan tidak dibatasi secara tegas dan pada umumnya mencakup ikan, amfibi, dan berbagai avertebrata penghuni perairan dan wilayah yang berdekatan, serta lingkungannya. Di Indonesia, menurut UU RI no. 9/1985 dan UU RI no. 31/2004, kegiatan yang termasuk dalam perikanan dimulai dari praproduksi, produksi, pengolahan sampai dengan pemasaran, yang dilaksanakan dalam suatu sistem bisnis perikanan. Dengan demikian, perikanan dapat dianggap merupakan usaha agribisnis.
Umumnya, perikanan dimaksudkan untuk kepentingan penyediaan pangan bagi manusia. Selain itu, tujuan lain dari perikanan meliputi olahraga, rekreasi (pemancingan ikan), dan mungkin juga untuk tujuan membuat perhiasan atau mengambil minyak ikan.
Usaha perikanan adalah semua usaha perorangan atau badan hukum untuk menangkap atau membudidayakan (usaha penetasan, pembibitan, pembesaran) ikan, termasuk kegiatan menyimpan, mendinginkan, pengeringan, atau mengawetkan ikan dengan tujuan untuk menciptakan nilai tambah ekonomi bagi pelaku usaha (komersial/bisnis).
Salah satu sejarah perdagangan dunia yang tertua yaitu perdagangan ikan cod kering dari daerah Lofoten ke bagian selatan Eropa, Italia, Spanyol dan Portugal. Perdagangan ikan ini dimulai pada periode Viking atau sebelumnya, yang telah berlangsung lebih dari 1000 tahun, namun masih merupakan jenis perdagangan yang penting hingga sekarang.
Di India, Pandyas, kerajaan Tamil Dravidian tertua, dikenal dengan tempat perikanan

Pengertian Perkebunan

Perkebunan tidak sepenuhnya sama dengan kebun.
Perkebunan diusahakan secara intensif menggunakan berbagai mesin besar.
Perkebunan adalah segala kegiatan yang mengusahakan tanaman tertentu pada tanah dan/atau media tumbuh lainnya dalam ekosistem yang sesuai; mengolah, dan memasarkan barang dan jasa hasil tanaman tersebut, dengan bantuan ilmu pengetahuan dan teknologi, permodalan serta manajemen untuk mewujudkan kesejahteraan bagi pelaku usaha perkebunan dan masyarakat.Tanaman yang ditanam bukanlah tanaman yang menjadi makanan pokok maupun sayuran untuk membedakannya dengan usaha ladang dan hortikultura sayur mayur dan bunga, meski usaha penanaman pohon buah masih disebut usaha perkebunan. Tanaman yang ditanam umumnya berukuran besar dengan waktu penanaman yang relatif lama, antara kurang dari setahun hingga tahunan.
Perkebunan dibedakan dari agroforestri dan silvikultur (budidaya hutan) karena sifat intensifnya. Dalam perkebunan pemeliharaan memegang peranan penting; sementara dalam agroforestri dan silvikultur, tanaman cenderung dibiarkan untuk tumbuh sesuai kondisi alam. Karena sifatnya intensif, perkebunan hampir selalu menerapkan cara budidaya monokultur, kecuali untuk komoditas tertentu, seperti lada dan vanili. Penciri sekunder, yang tidak selalu berlaku, adalah adanya instalasi pengolahan atau pengemasan terhadap hasil panen dari lahan perkebunan itu, sebelum produknya dipasarkan. Perkebunan dibedakan dari usaha tani pekarangan terutama karena skala usaha dan pasar produknya.
Ukuran luas perkebunan sangat relatif dan tergantung volume komoditas yang dihasilkan. Namun, suatu perkebunan memerlukan suatu luas minimum untuk menjaga keuntungan melalui sistem produksi yang diterapkannya. Kepemilikan lahan bukan merupakan syarat mutlak dalam perkebunan, sehingga untuk beberapa komoditas berkembang sistem sewa-menyewa lahan atau sistem pembagian usaha, seperti Perkebunan Inti Rakyat (PIR).
Sejarah perkebunan di banyak negara kerap terkait dengan sejarah penjajahan/kolonialisme dan pembentukan suatu negara, termasuk di Indonesia.

Pengertian Peternakan

Peternakan adalah kegiatan mengembangbiakkan dan membudidayakan hewan ternak untuk mendapatkan manfaat dan hasil dari kegiatan tersebut.
Pengertian peternakan tidak terbatas pada pemeliharaaan saja, memelihara dan peternakan perbedaannya terletak pada tujuan yang ditetapkan. Tujuan peternakan adalah mencari keuntungan dengan penerapan prinsip-prinsip manajemen pada faktor-faktor produksi yang telah dikombinasikan secara optimal.
Kegiatan di bidang peternakan dapat dibagi atas dua golongan, yaitu peternakan hewan besar seperti sapi, kerbau dan kuda, sedang kelompok kedua yaitu peternakan hewan kecil seperti ayam, kelinci dll.
Sistem peternakan diperkirakan telah ada sejak 9.000 SM yang dimulai dengan domestikasi anjing, kambing, dan domba. Peternakan semakin berkembang pada masa Neolitikum, yaitu masa ketika manusia mulai tinggal menetap dalam sebuah perkampungan. Pada masa ini pula, domba dan kambing yang semula hanya diambil hasil dagingnya, mulai dimanfaatkan juga hasil susu dan hasil bulunya (wol). Setelah itu manusia juga memelihara sapi dan kerbau untuk diambil hasil kulit dan hasil susunya serta memanfaatkan tenaganya untuk membajak tanah. Manusia juga mengembangkan peternakan kuda, babi, unta, dan lain-lain.
Ilmu pengetahuan tentang peternakan, diajarkan di banyak universitas dan perguruan tinggi di seluruh dunia. Para siswa belajar disiplin ilmu seperti ilmu gizi, genetika dan budi-daya, atau ilmu reproduksi. Lulusan dari perguruan tinggi ini kemudian aktif sebagai doktor haiwan, farmasi ternak, pengadaan ternak dan industri makanan.
Dengan segala keterbatasan peternak, perlu dikembangkan sebuah sistem peternakan yang berwawasan ekologis, ekonomis, dan berkesinambungan sehingga peternakan industri dan peternakan rakyat dapat mewujudkan ketahanan pangan dan mengantasi kemiskinan.


Pengertian Pertanian

 PENGERTIAN PERTANIAN
Pertanian adalah kegiatan pemanfaatan sumber daya hayati yang dilakukan manusia untuk menghasilkan bahan pangan, bahan baku industri, atau sumber energi, serta untuk mengelola lingkungan hidupnya. Kegiatan pemanfaatan sumber daya hayati yang termasuk dalam pertanian biasa dipahami orang sebagai budidaya tanaman atau bercocok tanam (bahasa Inggris: crop cultivation) serta pembesaran hewan ternak (raising), meskipun cakupannya dapat pula berupa pemanfaatan mikroorganisme dan bioenzim dalam pengolahan produk lanjutan, seperti pembuatan keju dan tempe, atau sekedar ekstraksi semata, seperti penangkapan ikan atau eksploitasi hutan.

Bagian terbesar penduduk dunia bermata pencaharian dalam bidang-bidang di lingkup pertanian, namun pertanian hanya menyumbang 4% dari PDB dunia. Sejarah Indonesia sejak masa kolonial sampai sekarang tidak dapat dipisahkan dari sektor pertanian dan perkebunan, karena sektor - sektor ini memiliki arti yang sangat penting dalam menentukan pembentukan berbagai realitas ekonomi dan sosial masyarakat di berbagai wilayah Indonesia. Berdasarkan data BPS tahun 2002, bidang pertanian di Indonesia menyediakan lapangan kerja bagi sekitar 44,3% penduduk meskipun hanya menyumbang sekitar 17,3% dari total pendapatan domestik bruto.

Kelompok ilmu-ilmu pertanian mengkaji pertanian dengan dukungan ilmu-ilmu pendukungnya. Karena pertanian selalu terikat dengan ruang dan waktu, ilmu-ilmu pendukung, seperti ilmu tanah, meteorologi, teknik pertanian, biokimia, dan statistika juga dipelajari dalam pertanian. Usaha tani (farming) adalah bagian inti dari pertanian karena menyangkut sekumpulan kegiatan yang dilakukan dalam budidaya. "Petani" adalah sebutan bagi mereka yang menyelenggarakan usaha tani, sebagai contoh "petani tembakau" atau "petani ikan". Pelaku budidaya hewan ternak (livestock) secara khusus disebut sebagai peternak.